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Chapter 5 
Identification and Results 
In this chapter, each of the ARTISAN wrist joint system components is identified 

by employing a variety of methods.  The combined open loop system is derived 

and the characteristics of the system discussed.  Finally, the results of the control 

design are presented along with a simulation of the closed loop system 

demonstrating the torque loop's potential performance.  

5.1 Identification of Components 
Different methods of identification were used for each of the different 

components of the ARTISAN link torque loop.  For each component, the 

identification method employed and the resulting pole/zero plot are provided for 

greater clarification. 

5.1.1 Motor and Amplifier 

Using the assumption that Inland Motor properly identified the system equations 

for the BDA Current Amplifier and the RBE(H) Motor, identification of the motor 

and amplifier system became a simple substitution of parameters into the system 
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equation provided in Section 2.2.1.  Using Equation (2.1) and Table 2-2, the 

realization of the motor and amplifier is shown in Equation (5.1). 
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The resulting pole/zero map of the system is shown in Figure 5-1. 

 
Figure 5-1: Motor and Amplifier Poles and Zero 

 

5.1.2 Mechanical Sensor 

In order to identify the characteristics of the mechanical sensor, a known torque 

source and measurement system are used to create a testbed to measure the 

response of the mechanical sensor.  As shown in Figure 5-2, a torque is created 

by the BDA Current Amplifier and RBE(H) Motor and applied to the sensor 

through the gearing mechanism.  The sensor deflection is sensed by a pair of 

LVDTs and the Analog Devices 2S54 LVDT-to-Digital Converter for which the 

system response has been identified.  
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Figure 5-2: System Setup for Mechanical Sensor Identification 

The torque command is created using a band-limited multi-sine, generated with 

Professor Istvan Kollar's Frequency Identification Toolbox in MATLABTM.   The 

multi-sine is an excitation signal comprised of a range of sinusoids selected at 

certain frequencies and amplitudes to excite the unknown system modes.  This 

method is preferable to sweep-sine or one-at-a-time frequency identification 

methods since it provides a single excitation signal containing a range of 

frequencies without causing major physical damage due to prolonged 

identification commands.   

Once the data is collected from the test, the Frequency Identification Toolbox 

creates an approximation of the transfer function based on the assumed 

structure for the entire system.  The response of the known components - the 

motor, current amplifier and converter - is then subtracted from the overall 

response and the remaining transfer function is identified as the mechanical 

sensor.  

Numerous tests identified the mechanical sensor transfer function as shown in 

Equation (5.2).  The resonant modes of the sensor are lightly damped, as 

discussed in Section 3.2.2, which leads to the assumption that the damping 

factors do not significantly impact the mechanical response.  
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The corresponding pole/zero map for the sensor is shown in Figure 5-3. 
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Figure 5-3: Mechanical Sensor Poles 

 

5.1.3 Sensor Electronics 

As discussed in Appendix C, the single pole structure for the Loop Compensator 

is selected for the AD2S93 for its fast rise time and low overshoot characteristics.  

To derive a transfer function for the resulting system, the Least Squares method 

is used to minimize the difference between the actual and the theoretical step 

response.  The resulting transfer function is a third order system with two 

dominant complex roots with heavy damping (zeta = 0.75) and a third pole with 

the real part ten times greater than the complex roots.   
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The step response of the theoretical system closely follows the actual step 

response as shown in Figure 5-4.  The resulting pole/zero map is shown in 

Figure 5-5, at a scale which does not show the high frequency pole. 
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Figure 5-4: Experimental and Theoretical Step Responses of AD2S93 

 
Figure 5-5: Dominant Poles of Sensor Electronics 
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5.1.4 Complete Open Loop System 

The pole zero map in Figure 5-6 combines all three systems, resulting in a 

seventh-order system with a single zero contributed by the motor/amplifier 

system.  The shaded areas indicate the separate dynamic contributions of each 

of the system components. 
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Figure 5-6: Complete Pole/Zero Map of Open Loop System 

The Bode Plot of the open loop system without gain normalization in Figure 5-7 

shows a gain margin of -22.6dB and no phase margin.  
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 Figure 5-7: Bode Plot of Complete Open Loop System 

With gain normalization, the gain margin becomes 3dB and the phase margin is 

a 10.7 degrees, as shown in Figure 5-8. 

 
Figure 5-8: Bode Plot of Normalized Open Loop System 
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5.2 Controller Design 
Once the complete open loop system has been identified, the symmetric root 

locus of the system is created to determine the optimal pole placement using the 

LQR performance index.  The symmetric root locus takes the transfer function of 

the open loop system G0(s): 

G s
N s
D s0b g b gb g=  (5.4) 

The poles of the root locus characteristic equation are then derived using the 

following equation: 
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where ρ  is the weighting factor defined in Section 4.4. 

Once the symmetric root locus is created, the time domain specifications from  

Table 4-2 are used to provide a region in the s-plane for the closed loop poles to 

reside.   As shown in Figure 5-9, when the weighting factor is increased, the 

mechanical sensor poles enter the desired (unshaded) region, but the motor and 

amplifier poles remain outside the desired closed loop region.  In addition, the 

motor and amplifier poles become the more dominant poles, forcing the response 

of the closed loop system to follow their characteristics. 
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desired

 
Figure 5-9: Symmetric Root Locus with Desired Region in white 

With the motor and amplifier poles becoming the dominant poles as the 

weighting factor is increased, the choice of ρ  becomes a tradeoff between 

overshoot and bandwidth. As shown in Figures 5-10 and 5-11, when the 

weighting factor is increased, the rise time of the closed loop response improves 

while the overshoot degrades.  To achieve the improved rise time, additional 

control effort is required.  From Figure 5-12, a moderate value of ρ = 8N  was 

selected. 
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Figure 5-10: Rise Time with respect to Weighting Factor 

 
Figure 5-10: Overshoot with respect to Weighting Factor 

 
Figure 5-12: Control Effort with respect to Weighting Factor 
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Based on the selected ρ  value, the LQR state feedback gain matrix, K, is 

defined: 

K = 97 1657 315 4632 182 6478 208 509 100 3374 123 053 219 4144. . . . . . .  

which results in the following closed loop poles for the torque loop: 
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Once the state feedback gains are selected, a set of state estimator gains are 

selected that maximizes the ratio between the poles of the estimator and the 

closed loop poles of the state-feedback system.  Based on this criterion, the state 

estimator gain matrix, L, is defined: 

LT = 2855232 3758 515 4849 932 26333 619 40625 922 7372 207 171646. . . . . . .  

These estimator gains result in the following estimator poles and a ratio of 4.1322 

between the slowest estimator root and the slowest torque loop root. 
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5.2.1 Simulation 

The system equations for the ARTISAN wrist joint are simulated with the state 

feedback gains using states generated from the state estimator using SIMULINK. 

As shown in Figure 5-13, the step response of the simulated closed loop system 

results in a rise time of 1.703 milliseconds with an overshoot of 8.3%.  Even 

though these time domain specifications do not exactly meet the desired 

characteristics, they represent an optimal tradeoff between bandwidth, overshoot 

and control effort limitations for this system.   

 
Figure 5-13: Step Response of Closed Loop System 

The open-loop Bode Plot in Figure 5-14 shows several improvements.  The gain 

margin is improved to 8dB, the phase margin is increased to 42.7 degrees and 

the final bandwidth to 216 Hz through the use of the LQR/LQE compensation.  
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Figure 5-14: Bode Plot of Open Loop System with Compensation 

5.3 Summary 
The resulting closed loop system for the ARTISAN wrist joint torque loop 

provides much faster response than the open loop system shown in Figure 5-15.  

The final closed loop response is a tradeoff between control effort and the 

desired time domain characteristics.   
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Figure 5-15: Open and Closed Loop Step Responses 

Due to the presence of the motor and amplifier poles, the desired time domain 

specifications enumerated in Section 4.1 were not attainable using the LQR/LQE 

method for controller design.  The resulting bandwidth of 216.7 Hz, as shown in 

Figure 5-16, means that when designing the outer kinematic loop compensation, 

the dynamic characteristics for the torque loop can not be ignored and must be 

taken into account. 

 
Figure 5-16: Closed Loop Frequency Response with Corner Frequency Labeled 


